学道文库 > 工作文稿 > 个人总结 > 学习总结 >

学生数学学习兴趣总结

| 云霞0

学习新课标,反思很多。教学的路上,任重而道远。结合自己的所学所想,我会认真改进自己的教学,真正做到数学课堂上不仅教师,更要育人!下面小编带来的学生数学学习兴趣总结,希望大家喜欢!

学生数学学习兴趣总结

学生数学学习兴趣总结(篇1)

数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy, Riemann, Weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。

复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!

复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。

由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。

在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的`教学方法。

难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和Newton-Leibniz公式相对应的结论等等。

这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用“已知”解决“未知”的思想等教学法。

参加培训之前我没有考虑过这些问题,通过这次学习,我对这些难点与重点的认识进一步深入了。以后的教学过程中用到所学的知识,为提高教学质量而努力。

学生数学学习兴趣总结(篇2)

新课程理念下的数学教学,要结合具体内容,尽量采取“问题情境—建立模型—解释—应用与扩展”的模式展开,教学中要创设按这种模式教学的情景,使学生在经历知识的形成与应用的过程中,更好地理解数学知识。

1、营造动手实践,自主探究与合作交流的氛围

现代教育观念—迈向学习化社会,提倡终身学习,使学生学会认知、学会做事—让学生学会交流、学会与人共事。新课程理念下的数学教学,要努力让学生做一做,从做中探索并发现规律,与同伴交流,达到学习经验共享,并培养合作的意识和交流的能力,在交流中锻炼自己,把思想表达清楚,并听懂、理解同伴的描述,从而提高表达能力和理解接受能力。

2、尊重个体差异,面向全体学生

“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”这是新课程标准努力倡导的目标,要求教师要及时了解并尊重学生的个体差异,承认差异;要尊重学生在解决问题过程中所表现出的不同水平。为此,我想教师应该先了解所教学生的情况,根据学生的知识基础、思维水平、学习态度、意志强弱、智力和能力、平时成绩等将学生分成不同层次,可以分成按课程标准的基本要求进行教学的.学生;按照略高于基本要求进行教学的学生;按较高要求进行教学的学生。问题情境的设计、教学过程的展开,根据不同层次学生的实际,引导学生在与他人的交流中选择合适的策略,由此来丰富数学活动的经验,提高思维水平。

3、改变数学学习方式

《课程标准》倡导自主探索、合作交流与实践创新的数学学习方式,从学生的生活经验和已有的知识背景出发,向他们提供了充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能,数学思想和方法,同时获得广泛的数学活动经验。数学教学是数学活动的教学,是师生交往、互动与共同发展的过程,学生是数学学习的主人,教师是学生学习的组织者、引导者和合作者。

4、树立新的课程观,用好教材,活用教材

新课程理念下,教师不再是课本知识的解释者和忠实的执行者,而是与专家、学生等一起构建新课程的合作者。教学中要注重书本知识向实际生活回归、向学生经验回归。在教学中,一方面要用教材,理解教材编写的意图、渗透的理念,充分利用教材的已有资源进行教学;另一方面,根据学生的实际,可以对教材内容进行重组、补充、加工,创造性地使用教材。教科书并非唯一的数学课程资源,我们应该善于开发其他的教学资源,它还包括教学中可以利用的各种教学资料、工具和场所,如实践活动材料、多媒体光盘、计算机软件及网络、报刊杂志等。

学生数学学习兴趣总结(篇3)

全面复习,把书读薄

从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏。

全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到。这就是全面复习的含义。

突出重点,精益求精

在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。"猜题"的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,"猜题"便行不通了。我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式。由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广。比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精。

基本训练反复进行

学习数学,要做一定数量的'题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到下确答案。这就是我们在前言中提到的,在20分钟内完成10道客观题。其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错。

高等数学是高等工科院校的重要基础课程。但对于如何学好这门课程。有些同学却是百展莫愁,头痛不已。而高数的学习、掌握和运用是后序课程的基础和保障,学不好高数,对于三大力学,还有结构设计原理来说,是不可能学好的。

数学是一门深奥而又有兴趣的课程。如果增加对这门课程的自信心,不要畏惧它。你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。

多想多做是学好数学的关键。多想是根本,多做是基础,多做是为了熟能生巧,是为了真正应用,是学好数学的前提条件。而多想充分发挥联想是学好数学的根本条件。学数学要知道举一反三,当老师讲到某一点或某一类型的问题时,你的思路就应拓展开来,不应仅仅局限于这一点或这一类型的问题,而应该把前面所学的知识点结合起来,想想如果你碰到这种题目你会怎么办?假如以后碰到这种类型的题目你又会怎么样?其实数学是个活学问也是个死学问。正所谓万变不离其宗。所有的题目都是所学过的公式和方法稍微转变一下过来的。对于像我这样自学的人来说,更需要多做、多想。这样才能加深理解,运用自如。

现在懂了,以后又不会做了。数学必须要做题,对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。

学好数学,学懂数学,主要的是“通”,而如何能“通”,这就是日积月累的多想多做,只要您通过勤学苦练,坚持不懈的努力,您一定会体会到高等数学没什么可怕的。

学生数学学习兴趣总结(篇4)

对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的,高等数学学习方法与经验。但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。因此,一定要尽自己最大的努力来学好数学.

在我看来,数学其实是一门非常奇妙而有趣的学问。只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?

课本对于数学来说,是很重要的。我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。

以下是我个人觉得在数学学习过程中非常必要的几点:

1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解。概念、定理、公式要在理解的基础上记忆。我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。

4、标出重点。平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.

最后想谈谈数学这一科目的应试技巧。概括说来,就是"先易后难"。我们常常有这样的体会,头脑清醒的时候,本来一些较难的题也会轻易做出来;相反,头脑混沌的时候,一些简单的题也会浪费很多时间。考试时,遇到拦路虎是不可避免的,停下来有两种可能,一是费了九牛二虎之力终于做出来,但由于耗费了大量时间,接下来或者不够时间做完题目,或者担心时间不够,内心焦急,一时连简单的题也做不出来了;二是还是没有做出来,结果不仅浪费了时间,而且连后面的题也没做完。而先易后难,则是愈做愈有信心,头脑始终保持清醒的状态,或者最后把难题做出,或者至少保证了会做的题不丢分。

2002年10月自考下来,高数工本只考了75分,我望着一尺高的草稿纸,回想近三个月来的日日夜夜,不禁“有所叹焉!”遂将一些心得,形成文字,没有整理,希望有兴趣一阅的朋友批评、交流。

2002年8月,我决心自考计算机应用专业,老婆不反对、不支持、不打击、只出钱。当月报考了高数工本和C++。我选择了难度,选择一个希望。自考者多数同时还有工作,我是一名警察,不仅要上班,还要加夜班,没有固定的学习时间,也不能听课,也不可能有时间去听课。自1993年7月高考失利已来,离别校园已九年有余。重新捧起数学,且为占10学分的高数工本,难度之大、时间之促,与高考不相上下。

经验:做完一切书上习题、不会做也要把答案抄一遍。

要不然,如何用得完那一尺高的草稿纸!我把大量的时间用在做题上,不值班的时候,常常演算至深夜、至次日凌晨。遇到不会做的题,就把参考答案看懂,再演算一遍。

教训之一:只做习题、未做例题

其实,我的第一经验是最重的败笔!临近考试时,我开始作历年试题,做下来才顿悟。第一是例题、第二是例题、第三还是例题!大家对本次自考最后一题有印象吧?是例题!历年大题,均有例题或其“变种”!事实上我们教材中的“总习题”有一定难度,而且每题花时不少!我们的自考,一般不会考那么难的。而我平时花时最多的是“习题、自测题、总习题”,为完成之,不得不减少了看书和例题的时间。完全的事倍功半!(猪啊!)所以建议后来者:重视例题,要自已会做。习题中,重要章节要做、少部分不做,自测题在完成一章后做,总习题不做。

教训之二:全面出击,没有重点

我从头至尾把教材做了一遍,因为内容太多,公式太多,结果做了后面的,忘记前面的。到最后,脑壳里仍是一团酱糊。其实,高数是相当严密的科学(还用你说!),从头推到尾!几个重点:极限、导数、不定积分、空解、微分方程,书后都有大量的习题,一个小题就有二十至三十个子题,这就是重点罗。

教训之三:死钻牛角尖,看得太难

举个例吧,求微分方程的解,我在“二阶常系数非齐次方程”一节上,花了些时间,先看不懂,做了许多题,看了许多例题,才搞明白是怎么回事!结果一看历年试题,人家根本就不可能出那么繁的题!这样的例子很多,还有各种物理应用,也根本就不会考!而傅立叶级数,只要会公式,三个边界上公式,就可以了,至于如何来的、如何应用,可以不去管他。于是我得出一结论:看不懂的,根本不会考。看得懂的、似是而非的,就要多看多练习。

给大学新生——高等数学学习方法

目前,每当一年高考结束,数百万高中学生通过自己的奋力拼搏,在同龄人中脱颖而出,升入自己梦寐以求的各类高等院校开始在新的环境进行学习的时候,社会上各大媒体都会不断地重复一个话题:一个高中生怎样尽快地从心理上、生理上等方面溶入新的环境,成为一名合格的.大一新生?而且不时的在电视新闻或报刊出现大一的学生在新的环境中沉眠于网络或电子游戏,而跟不上大学的学习进度而退学的例子。笔者认为:一个高中生升入大学学习后,不仅要从环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。我在高等工科院校从事高等数学的教学工作已有三十余年,高等数学在工科院校的教学计划中是一门基础理论课程,是大一新生必修的课程,它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。如在校的继续学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学……等等,也才能学好自己的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

学生数学学习兴趣总结(篇5)

为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。

组织学生参加每年高教社杯全国大学生数学建模竞赛。

一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。

年度会员招收工作。

在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。

干事招聘会。

在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。

数学建模专题讲座。

邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。

会员大会。

拟于每年10月下旬和12月上旬,召开两次西安电力高等专科学校数学建模协会会员大会;会间将有请协会的辅导老师:廖虎教授、余庆红、吴文等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。

西安电力高等专科学校第二届大学生数学建模竞赛。

为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的`大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。

数学建模经验交流会。

为加深我校学生对数学建模知识的了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。

大学生数学建模协会网站的建设与信息服务。

在有关领导的关心帮助下,本协会的网站本着服务会员、交流心得、学习经验、传播知识的原则,对各种数学建模相关知识(论文、软件)进行发布,对校园内各种相关新闻信息进行报道,对各种同学们关心的数学问题进行讨论。本学期,我们将利用网站这一优势,我们将充分利用网络信息传递速度快的特点,在发挥网站宣传平台这一作用的基础上,着手举办一些时代性强、参与性强、灵活生动的网络活动。

学生数学学习兴趣总结(篇6)

教研组举办活动时,全体数学教师重新学习了《数学课程标准》,对数学教学有了新的认识。

新旧课标对比之后,比较显目的的是关于“基本理念”和“总体目标”的修订。“基本理念”指出:数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展,达到“获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本活动经验”的目标。

在日常生活中,我们到底会用到多少的数学知识?数学怎是人人所必须呢?又怎能体现其“有价值”?那么学习数学的意义又何在?

从这些的修订处中,我找到了一些答案。是呀,许多的数学知识通常是出校门后不到一两年便很快忘掉了,学到的数学知识显得一无是处。然而细想,不管从事什么业务工作,深刻于每个人头脑中的数学精神、数学的思维方法、研究方法、推理方法等都随时随地地发生作用,令我们受益终身。新的《数学课程标准》也指出:学生通过学习,要能够获得适应未来社会生活和进一步发展所必需的基本的数学思想方法和活动经验。是呀,观察现实生活中的各行业,对人的素质要求有着共同之处,要求走向社会的人,具备严谨的工作态度,具有善于分析情况,归纳总结,综合比较,分类评析,概括判断的工作方法,这一切都是在数学思想的渗透中得以培养的。

当然,修订的真正意图在于让我们一线教师在实践中实施、落实。那就要求我们必须真正领悟精神、领悟理念,认真钻研教材,提高渗透的自觉性、把握渗透的层次性;同时要讲究方法,把握好教学过程中进行数学思想渗透的.契机;更应该看到,对学生数学思想的渗透,不是一朝一夕就能见到学生数学能力提高的,而是一个过程。数学思想必须经过循序渐进和反复训练,才能使学生真正地有所领悟。

总而言之,在小学数学教学中有意识地渗透一些基本数学思想和积累一些基本活动经验,不仅能使学生领悟数学的真谛,懂得数学的价值,学会数学地思想和解决问题,还可以把知识的学习和能力的培养、智力的发展有机地统一起来,这正是课程标准所强调的,也是我读《课标修订稿》所领悟的。也只有这样,才能真正使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

学生数学学习兴趣总结(篇7)

本学期,我有幸听了多堂优秀的数学课,现在我把听课后的心得体会向老师们作一个汇报。

通过听课,让我学到了很多很多新的教学方法和新的教学理念。这些课在教学过程中创设的情境,目的明确,为教学服务。由于所使用教材不同,高年级在教材上没有关于“选择合理的计算方法解决问题”这一块内容,但执教老师在刚接到执教任务之时就到当地小学深入了解学生的学习情况,对已有的知识经验、不同层次的学生情况进行摸底,然后根据学情制定了详细地、符合学生的教学设计,同时结合不同版本的教材,一遍一遍的研究、改进,最终呈现课堂的才是精致的。可见,调查学情,挖掘教材对于上好一堂课是多么的重要。另外,印象较深的还有贲友林老师的课,他以独特的风格,幽默诙谐的.形体语言博得了满堂彩。吴金根老师主张把一切还给学生,即主张:学生能自己探索发现的,教师不提醒;学生能通过思考描述出来的,教师不引导;学生能自己总结出规律的,教师不告知等等,允许学生出现错误,允许学生出现分歧,允许学生出现自己的预设中没有的问题,创设的情境真正为教学服务,课堂的原生态味儿十足,这也充分展现了高老师深厚的教学功底,临时应变的能力很强。有老师说:“应用知识可以去解决问题,对现象的解释也是解决问题的一种形式。”优秀的数学课正好体现了这一点,比如说,利用黄金比0。618:1去解释为什么刘翔的身材看上去比菲尔普斯的身材美,为什么符合黄金比的长方形看上去比较舒服等,这都是用所学知识去解释生活中出现的问题,听完这三节课,我们对解决问题又有了新的认识。充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。执教者的语言精练、丰富,特别是对学生鼓励性的语言十分值得我学习。

这些,都是我们年轻教师应该去好好学习的地方,并应借此,在不断在模仿与摸索中更好地完善自己的课堂教学。

徐斌老师经常说,什么样的课才算是一堂好课呢?其实也很简单,就是要培养学生良好的习惯,但这种习惯并不是上课发言、遵守纪律的习惯,而是能够和老师一起思考的这么一种习惯,这种习惯形成的前提是学生能够集中注意力。徐老师引用一位教授的话说:“课堂教学上,老师讲的拙一点没关系,关键是要引发学生思考,而引发学生思考的最好办法就是老师和学生一块儿思考。”

总结起来就是两点,学生跟着教师一起思考,教师跟学生一起思考。这就是一堂好课的标准

    相关文章

    314985