六年级的下册数学教案
编写教案的目的在于帮助教师更好地组织教学内容、规划教学流程、提高教学质量、增强教学自信心。小编给大家分享六年级的下册数学教案参考,方便大家参考六年级的下册数学教案怎么写。
六年级的下册数学教案篇1
教学目标
1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;
2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;
3、培养学生分析和解决实际问题的能力,发展学生的思维;
4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。
教学关键
培养学生分析和解决实际问题的能力
教学重点
复习分数乘除法应用题,掌握解题方法。
教学难点
找准单位“1”
教学步骤
一、基础训练导入。
师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?
专项训练:
课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。
在每道题后追问:从信息中你还知道了什么?指名回答,并作评价:说一说你们找单位1有什么好的方法吗?
我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?
常规性基本训练,复习找单位“1”训练:为新知识做铺垫。
二、根据看线段图列式
师:谁来说说,根据线段图应该这么列式呢?出示线段图【教学课件演示】
注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。
三、基础练习
基础练习只列式不计算
师:用我们刚才复习的&39;方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?
归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。
尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?
【教学课件演示】
培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。
四、对比练习
1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。
通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。
六年级的下册数学教案篇2
知识网络
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
重点难点
列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。
学法指导
(1)列方程解应用题的一般步骤是:
1)弄清题意,找出已知条件和所求问题;
2)依题意确定等量关系,设未知数x;
3)根据等量关系列出方程;
4)解方程;
5)检验,写出答案。
(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。
(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。
经典例题
例1某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。
思路剖析
如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程解答
设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。
例2牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?
思路剖析
这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。
设供25头牛可吃x天。
本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。
解答
设供25头牛可吃x天。
由:草的总量=每头牛每天吃的草头数天数
=原有的草+新生长的草
原有的草=每头牛每天吃的草头数天数-新生长的草
新生长的草=草的生长速度天数
考虑已知条件,有
原有的草=每头牛每天吃的草1020-草的生长速度20
原有的草=每头牛每天吃的草1510-草的生长速度10
所以:原有的草=每头牛每天吃的草200-草的生长速度20
原有的草=每头牛每天吃的草150-草的生长速度10
即:每头牛每天吃的草200-草的生长速度20
=每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200-每头牛每天吃的草150
=草的生长速度20-草的生长速度10
每头牛每天吃的草(200-150)=草的生长速度(20-10)
所以:每头牛每天吃的草50=草的生长速度10
每头牛每天吃的草5=草的生长速度
因此,设每头牛每天吃的草为1,则草的生长速度为5。
由:原有的草=每头牛每天吃的草25x-草的生长速度x
原有的草=每头牛每天吃的草1020-草的生长速度20
有:每头牛每天吃的草25x-草的生长速度x
=每头牛每天吃的草1020-草的生长速度20
所以:125x-5x=11020-520
解这个方程
25x-5x=1020-520
20x=100
x=5(天)
答:可供25头牛吃5天。
例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?
解答
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
解法一:用直接设元法。
80x-40=(30x+40)2
80x-40=60x+80
20x=120
x=6(座)
解法二:用间接设元法。
设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
(x-40)30=(2x+40)80
(x-40)80=(2x+40)30
80x-3200=60x+1200
20x=4400
x=220(米3)
由灰砖有220米3,推知修建住宅(220-40)30=6(座)。
同理,也可设有红砖x米3。留给同学们练习。
答:计划修建住宅6座。
例4两个数的和是100,差是8,求这两个数。
思路剖析
这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。
解答
解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:
x+8+x=100
解这个方程:2x=100-8
所以x=46
所以较大的数是46+8=54
也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:
100-x-x=8
所以x=46
所以较大的数为100-46=54
答:这两个数是46与54。
六年级的下册数学教案篇3
教学目标
1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;
2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;
3、培养学生分析和解决实际问题的能力,发展学生的思维;
4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。
教学关键 培养学生分析和解决实际问题的能力
教学重点 复习分数乘除法应用题,掌握解题方法。
教学难点 找准单位“1”
教学步骤教学过程教学课件演示教学意图
一、基础训练导入。
师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?
专项训练:
课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。
在每道题后追问:从信息中你还知道了什么?指名回答,并作评价:说一说你们找单位1有什么好的方法吗?
我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?
常规性基本训练,复习找单位“1”训练:为新知识做铺垫。
二、根据看线段图列式
师:谁来说说,根据线段图应该这么列式呢?出示线段图【教学课件演示】
注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。
三、基础练习
基础练习只列式不计算
师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?
归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。
尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?
【教学课件演示】
培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。
四、对比练习
1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。
通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。
六年级的下册数学教案篇4
教学内容:教材14页例4和练习二余下的练习。
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(只列式,不计算)
二.教学例4
(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=20__.4≈20__(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、指导练习
1、练习二第9题
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
2、练习二第17题
先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。
3、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
4、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。
四、布置作业
练习二第10、15、20题
第三课时教学反思
学生有上一节课扎实的表面积教学作基础,这节课例4的学习显得十分轻松。在这一环节,学生共提出两个有价值的问题:“求做这样一顶帽子需要多少面料,也就是求哪几部分的面积总和?”“结果20__.4按四舍五入法保留整十数应该约等于20__,可为什么教材中应是约等于20__?”我在此环节,将教学重点放在联系生活实际,引导学生思考所求问题到底是求什么,即要求学生能够具体问题具体分析。在教学完例题后,运用一组选择题,提升学生灵活应用知识解决实际问题的能力。练习题目如下:
做通风管需要多少铁皮
圆柱形水池的占地面积
做无盖的圆柱形水桶需要多少铁皮
做圆柱形油桶需要多少铁皮
卫生纸中间硬纸轴需要多大的硬纸板
求水池底部和四周贴瓷砖的面积
压路机滚筒滚动一周的面积
(1)求侧面积;(2)求1个底面积与侧面积的和;(3)求底面积;(4)求2个底面积与侧面积的和
指导练习内容较多,难以在一课时完成,所以准备再补充一节练习课。
两个惊喜
1、没想到班上有一名同学(数学科代表袁文杰)通过比的知识发现了底面积与侧面积之间的倍数关系,从而利用这一关系提高求表面积的速度。因为底面积=πr2,而圆柱体的侧面积=2πrh,所以S底:S侧=(πrr):(2πrh)=r:2h,2S底:S侧=r:h。当已知圆柱体底面半径和高求表面积时,如果先求出圆柱体侧面积,就可用侧面积÷h×r快速求出两个底面的面积,从而提高计算速度。
2、没想到班上居然有一名同学(数学科代表江赐阳阳)会用课前我查找资料中所介绍的转化方法来推导圆柱体的表面积。在他的带领下,同学们推导得出新的表面积计算公式:圆柱体的表面积=圆柱的底面周长×(高+底面半径)。正因为了解到这种方法,在练习中计算已知底面周长3.14米,高5米,求表面积时,全班前30名同学完成的同学不约而同地采用了这种方法,体现出这种方法对于已知周长和高求表面积的简便之处。
六年级的下册数学教案篇5
教学重点:
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教学过程:
一、引入
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
二、教学比例尺的意义。
1.什么是比例尺(自学书上内容,学生交流汇报)
在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2.介绍数值比例尺
让学生看图。
“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。
3.介绍线段比例尺
还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”
4.介绍放大比例尺
“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“
学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1
比较这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5、总结
比例尺书写特征。
(1)观察:比例尺1:100000000
比例尺1/5000000
比例尺2:1
(2)看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
6、比例尺的化简和转化
“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”
说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作
“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。
“现在单位统一了,是多少比多少,怎样化简?”
图上距离:实际距离=1:5000000
教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。
三、巩固练习
1、做一做。
过程要求
(1)学生独立完成。(要求写出数值比例尺)
(2)同学之间互相交流。
(3)汇报交流结果。
2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。
四、课堂小结
(本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)
教学目标:
1、理解比例的意义,会根据比例的意义组成比例。
2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。
3、感受生活中处处有数学,激发学习数学的兴趣。
教学重、难点:理解比例的意义。
教学方法:自主合作,讨论交流。
教学过程:
一、复习旧知,目标展示。
1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。
2、今天,我们要在比的基础上学习一个新知识(板书:比例)。
3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?
【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】
4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。
二、合作交流,探究新知。
〈一〉教学比例的意义。
1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)
2、自主探究,初步形成印象。
(1)两个比相等可以用等号连接吗?
(2)你能在练习本上写出两个可以有用等号连接的比吗?
(3)和你小组内同学交流你写出的式子,并说明理由。
(4)学生汇报。
3、形成概念。
(1)像黑板上我们所列出的这些式子叫做比例。
(2)你能用自己的话说说什么是比例吗?
(3)老师小结:表示两个比相等的式子叫做比例。
4、深化概念,巩固练习。
(1)你认为组成比例的关键是什么吗?(两个比的比值相等)
(2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)
〈二〉教学比例各部分的名称。
1、比例各部分有自己的名称?你知道吗?
(预设:学生如果不清楚的话,教师说明比例各部分的名称)
2、找出黑板上这几个比例的内、外项。
3、比可以写成分数的形式,比例也可以写成分数形式。
(1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)
(2)找出它们的内、外项。
(3)你发现什么规律了吗?
〈三〉比和比例的区别。
1、小组讨论、交流。
2、全班交流。
3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。
三、巩固练习。
1、填空。
(1)、表示()的式子叫做比例。
(2)、判断两个比能否组成比例,要看它们的()是不是相等。
(3)、写出比值是的两个比():()和():(),写成比例是()。
(4)、选取48的4个因数组成一个比例是()。
2、课本32页国旗尺寸成比例吗?
3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)
(1)学生独立思考后,小组交流。
(2)全班交流。
(3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。
六年级的下册数学教案篇6
教学内容:
教材第4页的例2和“试一试”、“练一练”,练习二第1-4题。
教学目标:
1.使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
2.培养解决简单实际问题的能力,体会生活中处处有数学。
3.进一步体会知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的体验,增强学好数学的信心。
教学重点:
掌握百分数在实际生活中的应用。
教学难点:
正确、熟练地运用百分数的知识进行纳税的计算。
预习题:弄清什么是纳税?怎样纳税?纳税的意义是什么?(课前布置学生上网查询相关信息)
教学准备:
教师准备有关纳税的一些资料;教学光盘及多媒体设备
教学过程:
一、认识、了解纳税
纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。
税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。我国的税收逐年增长,到20_年,全年税收收入已达到30866亿元。(进行纳税意识教育)
提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。板书:纳税
二、教学新课
1.教学例2
出示例2:星光书店去年十二月份的营业额约为50万元。如果按营业额的6%缴纳营业税,这个书店去年十二月份应缴纳营业税约多少万元?学生读题。
提问:想一想,题里的营业额的6%缴纳营业税,实际上就是求什么?怎样列式计算?你们会做吗?试试看!
学生尝试练习,集体订正,教师板书算式。
强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。
2.我们怎样计算呢?
方法1:引导学生将百分数化成分数来计算。
方法2:引导学生将百分数化成小数来计算。
3.做“试一试”
提问:这道题先求什么?再求什么?
生:先求5200元的10%是多少?再加上5200元就是买摩托车共付的钱。
学生板演与齐练同时进行,集体订正。
4.学生在课本上完成练一练。
三、同步练习
1.练习二的第1、2题。
指名学生读题,让学生说明算式里的每个数据的意思。
学生独立思考后练习,交流时请学生说说解题思路,教师及时了解学生解答情况。
2.练习二第3题。
学生读题后,教师简单介绍个人所得税的知识。
学生独立思考并列算式计算,然后交流。
四、拓展提高
1.练习二的第4题。
我国20_年10月公布的个人所得税征收标准:个人收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。
不超过500元的5%
超过500元~2000元的10%
超过2000元~5000元的15%
------
李明的妈妈月收入1800元,爸爸月收入2500元,他们各应缴纳个人所得税多少元?
在这道题中,李明的妈妈应纳税的收入是1800元吗?为什么?全班展开讨论李明妈妈的纳税的收入应为多少元?税率是多少?那么爸爸的收入是2500元,应纳税额为多少?他的税率又是多少呢?
介绍分段纳税,最后让学生分别求出李明的爸爸妈妈各应缴纳的个人所得税。
将三段不同的收税看作三个档次,先用总收入减去1600,看超过的部分是属于哪个档次,如果超过的部分少于500,属第一档次,用超出的部分乘以5%;如果超过的部分大于500小于2000就属第二档次,第一档次的税肯定要交,用500乘5%,再用(超出部分-500)乘10%,然后相加;如果超过的部分大于2000小于5000就属第三档次,第一、二档次的税肯定要交,用500乘5%,1500乘10%,(超出部分-2000)乘15%,再相加。
关键是这里第一、二档次的,要全额交税。
五、课堂回顾
提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!
六、布置作业
课内作业:补充习题
板书设计:
纳税问题
营业额×5%=营业税
60×5%=3(万元)
答:应缴纳营业税3万元。
爸爸月收入2500元,应分两段来纳税:
2500-1600=900元
500×5%=25元
(900-500)×10%=40元
25+40=65元
答:爸爸应缴纳个人所得税65元
六年级的下册数学教案篇7
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程:
(一)、创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)、探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2.操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长×宽
↓↓↓
圆柱的侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。底面周长是1.6米,高是0.7米
2。底面直径是2分米,高是45分米
3。底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
六年级的下册数学教案篇8
【教学目标】
1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。
2、能按一定的比,将一些简单图形进行放大或缩小。
【教学重点】
图形的放大与缩小。
【教学难点】
按一定的比把图形放大或缩小。
【教学准备】
多媒体
【自学内容】
见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例尺?
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2、怎样求比例尺?
求图上距离和实际距离的最简整数比。
3、一栋楼房东西方向长40,在图纸上的`长度是50c。这幅图纸的比例尺是多少?
(1)学生尝试独立求比例尺。
(2)汇报交流
50c:40=50c:4000c=1:80
(3)你是怎么想的?
二、关键点拨
1、求比例尺。
(1)怎样求一幅图的比例尺?
先写出图上距离与实际距离的比,再化成最简整数比。
(2)比例尺有什么特点?
比例尺是前项或后项为1的比。
(3)比例尺可以怎样表示?
数值比例尺和线段比例尺。(1:500000)或(线段比例尺)
2、求实际距离。
(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?
(2)学生尝试独立列比例解答。
(3)汇报交流
解:设这两地之间的实际距离大约是x厘米。
=
=5000000
5000000c=50
(4)你觉得在求实际距离时要注意什么问题?
实际距离一般用千米做单位。
3、求图上距离
(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?
(2)学生尝试画操场的平面图。
(3)汇报交流
你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】
三、巩固练习
1、课本第53页练习八第1题求比例尺。
2、课本第52页做一做第1题。
3、课本第52页做一做第2题。
四、分享收获畅谈感想
这节课,你有什么收获?听课随想
六年级的下册数学教案篇9
设计说明
“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1、借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2、借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3、借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备
教师准备PPT课件
学生准备玻璃杯直尺水实验记录单
教学过程
⊙复习引入
1、复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?
(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?
预设
生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?
预设
生1:底面积=圆柱的.体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2、引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)
设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
⊙探究新知
1、在具体情境中初步感知成反比例关系的量。
(1)课件出示教材47页例2,引导学生结合问题进行观察。
师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积/cm2
10
15
20
30
60
…
水的高度/cm
30
20
15
10
5
…
①表中有哪两种量?
②水的高度是怎样随着杯子底面积的大小变化而变化的?
③相对应的杯子的底面积与水的高度的乘积分别是多少?
(2)学生思考后在小组内交流。
(3)全班交流。
预设
生1:有杯子的底面积和水的高度这两种量。
生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。
生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。
(4)明确什么是成反比例的量。
因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。
六年级的下册数学教案篇10
教学目标:
使学生认识圆柱的特征,认识圆柱侧面的展开图。
教学准备:
教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。
教学重点:
使学生认识圆柱的特征。
教学难点:
理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。
教学过程:
一、复习
我们已经认识了长方体和正方体。
谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?
谁能说一说我们学习了长方体和正方体的哪些知识?
二、新授
教师:今天老师和大家一起学习一种新的.立体图形:圆柱体,简称圆柱。
1、初步印象
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)
2、小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、交流和汇报
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、举例说明进一步明确特征
六年级的下册数学教案篇11
教学要求:
1、使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
教学重点:认识解比例的意义。
教学难点:应用比例的基本性质解比例。
教学过程:
一、复习引新
1.做第32页复习题。
出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。
2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)
4:3=2:1.5=x:4=1:2
提问;根据积相等的式子,你能求出最后一题里的x吗?
3.引入新课。
在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。
二、教学新课
1、教学例2。
出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
2、教学例3。
出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3、教学“试一试”。
提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。
4、小结方法。
提问:你认为根据比例的基本性质要怎样解比例?
三、巩固练习
1、做“练一练”。
指名四人板演。其余学生分两组,每组两道题,做在练习本上。
2、做练习六第8题。
让学生做在课本上,指名口答。
3、做练习六第l0题。
学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。
4、做练习六第11题。
学生口答、老师板书,看能写出多少个比例。
四、讲解思考题
提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?
五、课堂小结
这堂课学习的什么内容?应用比例的基本性质怎样解比例,
六、布置作业
课堂作业:练习六第6题第(1)~(4)题,第7题。
家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的判断分析推理能力。
六年级的下册数学教案篇12
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教具学具:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看x疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是
3、讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七、布置作业
《家庭作业》第1页的练习。
六年级的下册数学教案篇13
教学内容:
苏教版义务教育教科书《数学》六年级上册70~71页例2、练一练,第73页练习十一第4~7题。
教学目标:
1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
解决用假设的策略时总量变化的实际问题。
教学难点:
理解假设时数量的复杂关系。
教学过程:
一、出示问题,讨论策略
1、出示例2,读题。
2、小组讨论:你准备怎样来解决这个问题?用什么策略?
3、你准备怎样假设呢?
二、自主探索,运用策略。
1、出示提问:
(1)这题告诉了我们哪些条件,要求什么问题?
(2)你是怎样理解题中数量之间关系的?
通过交流理解:1个大盒里的球的个数+5个小盒里球的个数=80,1个大盒里球的个数—8=1个小盒里球的个数,或者1个
小盒里球的个数+8=1个大盒里球的个数。
2、列式计算:
(1)你能根据假设后的数量关系列示解决吗?
(2)提问:如果假设6个全是大盒,球的总数又会发生怎样的变化呢?请大家先想一想,再根据这样的假设算出结
果,看看答案是不是相同。
集体评议,重点讨论球的总数发生了怎样的变化。
3、引导比较:
(1)刚才我们用两种思路解决了例2,假设6个全是小盒或者假设6个全是大盒,虽然假设的方法不一样,但你发现
它们有什么相同的地方吗?
小结。
三、反思比较,内化策略。
1、比较异同。
引导:上节课我们学习了例1,明确了假设的策略,今天又学习了例2,用假设的策略解决了另一类比较复杂的问题。回想一下,例1和例2的条件有什么相同和不同,解决时又有什么相同和不同?
同桌讨论后全班交流。
2、反思内化。
引导:回顾例1和例2解决问题的过程,你有什么体会?
四、拓展应用,巩固策略
1、做练一练第1题
提问:两种不同的假设有什么区别,解题时有什么不同?
让学生列式解答,指名板演。
2、做练一练第2题。
指出:当已知大、小两种量相差多少时,用假设策略时要按假设的方法,思考总量有什么变化,是增加了多少还是
减少了多少。
3、做练习十一第5题
引导学生课业用三种不同的假设方法说明。
五、全课总结:
1、这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?
2、作业:
完成练习十一第4、6、7题。
六年级的下册数学教案篇14
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
六年级的下册数学教案篇15
教学内容:教材第48~49页的24时计时法,例1、例2和练一练,练习十第1~5题。
教学要求:
1、使学生认识24时计时法,会用24时计时法表示时刻。
2、使学生初步认识时间和时刻的区别,学会计算简单的求经过时间的问题,并培养学生初步的推理能力。
教学具:教具钟面、学生准备学具钟面
教学过程:
一、复习引新
1、提问口答。我们学过哪些时间单位?1个世纪是多少年?一年是多少个月?1个月的天数有哪几种情况?
2、引入新课。一天又叫做一日。一日是多少小时呢?这就是我们今天要学习的内容:24时计时法。
二、教学新课1、教学24时计时法。
(1)说明:1天就是1日,1日的时间就是一昼夜。在一日的时间里,钟表上的时针正好走两圈。想一想,一日共多少小时?
(2)演示:第一圈从夜里12时也就是0时起,夜里1时、2时、3时上午8时、9时、到中午12时,是12时。
提问:这是从夜里12时起走了几圈?现在是什么时候的12时?经过了多少小时?
板书下面的直线图:第二圈再从中午12时走,下午1时、2时、3时、晚上8时、9时、再到夜里12时,也就是第二天的0时,也是12小时。提问:第二圈是从中午12时到什么时候的12时?也就是经过了多少小时?板书直线图:
提问:谁来说一说在一日里,钟表上的时针走了怎样的两圈,共多少小时?
追问:一日等于多少小时?板书:1日=24小时
指出:从夜里12时起,走一圈正好是中午12时,是12小时;再走一圈到午夜12时又走了12小时,共24小时,所以1日等于24小时。
(3)认识24时计时法。说明:像上面这样分上午几时和下午几时来记时的方法,通常叫做普通计时法。邮电、交通、广播电视等部门为了记时方便,不使上午和下午时间混淆,一般都采用的是从0时到24时的记时方法。就是把时针走第二圈时,时针所指的钟表上的数分别加上12:下午1时叫13时、下午2时教14时晚上12时叫几时?24时也就是第二天的几时?
指出:像这样的0时到24时的记时方法,通常叫做24时计时法。与普通计时法比,上午的时刻相同,下午的时刻要把普通计时法的时刻数加上12。中央电视台每天19时播放新闻联播节目,这里的19时就是下午几时?
说明:在24时计时法里只要直接说几时,比较方便,在普通计时法里,一定要说明是上午几时或者是下午几时。
(4)巩固练习练一练第1题。指名板演,其余学生做在课本上。练习十第1题。小黑板出示,学生口答。练习十第2题。小黑板出示,指名板演,其余学生写在作业本上。集体订正。强调普通计时法要说明是上午还是下午。
2、教学求经过时间。
(1)教学例1。出示例题,读题。画直线图。
提问:题里用的是什么计时法?
这辆汽车从南京的开车时刻是什么时候?
到达上海的时刻是什么时候?要求什么?
说明:求路上用了多少小时,就是求14时30分到18时30分经过了多少时间?
追问:路上用了多少小时?你是怎样想的?这里的14时30分、18时30分指的是什么?4小时指的是什么?
(2)教学例2。出示例2,指名读题。提问:题里用的是什么计时法?在24时计时法里,这两个时刻各是几时?每天从8时到19时,营业了多少时间怎样计算?老师板书。