八年级数学教案大全
编写教案的过程也是教师学习和成长的过程,优秀的教案能够促进教师专业成长。怎样写八年级数学教案大全?这里提供八年级数学教案大全分享,供大家参考。
八年级数学教案大全篇1
极差
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量
2、会求一组数据的极差
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差
2、难点:本节课内容较容易接受,不存在难点。
三、例习题的意图分析
教材P151引例的意图
(1)、主要目的是用来引入极差概念的
(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量
(3)、交待了求一组数据极差的方法。
四、课堂引入:
引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
五、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。
六、随堂练习:
1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .
2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .
3、下列几个常见统计量中能够反映一组数据波动范围的是( )
A.平均数 B.中位数 C.众数 D.极差
4、一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )
A. 8 B.16 C.9 D.17
答案:1. 497、3850 2. 4 3. D 4.B
八年级数学教案大全篇2
(一)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(二)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(三)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的&39;公分母.
通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
(四)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
八年级数学教案大全篇3
一、分解因式
※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
※2.因式分解与整式乘法是互逆关系。
因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘.
二、提公共因式法
※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法。
※2.概念内涵:
(1)因式分解的最后结果应当是“积”;
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,ab+ac=a(b+c)
※3.易错点点评:
(1)注意项的.符号与幂指数是否搞错;
(2)公因式是否提彻底;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。
三、运用公式法
※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法。
※2.主要公式:
(1)平方差公式:
①应是二项式或视作二项式的多项式;
②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;
③二项是异号.
(2)完全平方公式:
①应是三项式;
②其中两项同号,且各为一整式的平方;
③还有一项可正负,且它是前两项幂的底数乘积的2倍。
※5.因式分解的思路与解题步骤:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)因式分解的最后结果必须是几个整式的乘积;
(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
八年级数学教案大全篇4
一、教学目标
1、使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。
2、使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。
3、使学生能够灵活运用分式的有关法则进行分式的四则混合运算。
4、引导学生不断小结运算方法和技巧,提高运算能力。
二、教学重点和难点
1、重点:分式的加减运算。
2、难点:异分母的分式加减法运算。
三、教学方法
启发式、分组讨论。
四、教学手段
幻灯片。
五、教学过程
(一)引入
1、如何计算:
2、如何计算:
3、若分母不同如何计算?如:
(二)新课
1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2、通分的依据:分式的基本性质。
3、通分的关键:确定几个分式的公分母。
通常取各分母的`所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
例1通分:
(1)解:∵最简公分母是,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。
(2)解:
例2通分:
(1)解:∵最简公分母的是2x(x+1)(x—1),
小结:当分母是多项式时,应先分解因式。
(2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),
练习:教材P,79中1、2、3。
(三)课堂小结
1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。
2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。
3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。
八年级数学教案大全篇5
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)
明确在欣赏了图案后,简单地复习:平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本
1欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习
(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)
八年级数学上册教案(五)延伸拓展
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
八年级数学教案大全篇6
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件.
2.提高对矩形的性质和判别在实际生活中的应用能力.
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.
教学重点:
矩形的性质和常用判别方法的理解和掌握.
教学难点:
矩形的性质和常用判别方法的综合应用.
教学方法:
分析启发法
教具准备:
像框,平行四边形框架教具,多媒体课件.
教学过程设计:
一.情境导入:
演示平行四边形活动框架,引入课题.
二.讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)
结论:有一个内角是直角的平行四边形是矩形.
八年级数学上册教案2.探究矩形的性质:
(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)
结论:矩形的四个角都是直角.
(2).探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.
①.随着∠α的变化,两条对角线的长度分别是怎样变化的?
②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳.)
结论:矩形的两条对角线相等.
(3).议一议:(展示问题,引导学生讨论解决.)
①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.
②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.
例解:(性质的运用,渗透矩形对角线的“化归”功能.)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米.求BD与AD的长.
(引导学生分析、解答.)
探索矩形的判别条件:(由修理桌子引出)
(1).想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形.
(理由可由师生共同分析,然后用幻灯片展示完整过程.)
(2).归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
三.课堂练习:
(出示P98随堂练习题,学生思考、解答.)
四.新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结.)
五.作业设计:P99习题4.6第1、2、3题.
板书设计:
4.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
三.矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
八年级数学教案大全篇7
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
八年级数学教案大全篇8
一、学习目标
1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点
重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2.提问:
①说说你是怎样计算的;
②还有什么发现吗?
(三)总结法则
1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______
2.本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则。
八年级数学教案大全篇9
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2=得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。
根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。
通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。
通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。
(二)重点、难点
一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
(三)教学目标
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
八年级数学教案大全篇10
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.
八年级数学教案大全篇11
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
●知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
●过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
●情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长,满足,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足,可以构成直角三角形;②7,24,25满足,可以构成直角三角形;③8,15,17满足,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长,满足,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
如果一个三角形的三边长,满足,那么这个三角形是直角三角形
满足的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15;②15,36,39;③12,35,36;④12,18,22
解答:①②
2.一个三角形的三边长分别是,则这个三角形的面积是()
A250B150C200D不能确定
解答:B
3.如图1:在中,于,,则是()
A等腰三角形B锐角三角形
C直角三角形D钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后,(图1)
得到的三角形是()
A直角三角形B锐角三角形
C钝角三角形D不能确定
解答:A
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求,又,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900==即△ABC是Rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形(),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系判断一个三角形是直角三角形;②满足的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形,便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长,满足,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入小试牛刀:登高望远
八年级数学教案大全篇12
一、学习目标:
1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重点:平方差公式的推导和应用;
难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)20_×1999(2)998×1002
导入新课:计算下列多项式的积.
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a—b)=a2—b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:计算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
随堂练习
计算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小结
(a+b)(a—b)=a2—b2
八年级数学教案大全篇13
极差
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量
2、会求一组数据的极差
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差
2、难点:本节课内容较容易接受,不存在难点。
三、例习题的意图分析
教材P151引例的意图
(1)、主要目的是用来引入极差概念的
(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量
(3)、交待了求一组数据极差的方法。
四、课堂引入:
引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
五、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。
六、随堂练习:
1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .
2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .
3、下列几个常见统计量中能够反映一组数据波动范围的是( )
A.平均数 B.中位数 C.众数 D.极差
4、一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )
A. 8 B.16 C.9 D.17
答案:1. 497、3850 2. 4 3. D 4.B
八年级数学教案大全篇14
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的类型。
同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)
问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
八年级数学教案大全篇15
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿
教学方法:启发法、
学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的.分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。