学道文库 > 教案 >

九年级数学教案模版

| 新华0

编写教案可以帮助教师更好地掌握教学内容,规划教学流程,增强教学自信心。下面给大家整理一些九年级数学教案模版,方便大家学习怎么写九年级数学教案模版。

九年级数学教案模版篇1

九年级数学教案-九年级数学教案设

九年级数学教案设计文桥中学

吴园田课题:太阳光与影子

课型:新授课教学目标

知识目标:

1、

经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下影子。

2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

3、了解平行投影与物体三种视图之间的关系。

能力目标:

1、经历实践,探索的过程,培养学生的实践探索能力。

2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向的不

同,培养学生的观察能力和想象能力。

情感目标:

1、让学生体会影子在生活中的大量存在,使学生能积极参与数学学习活动,激发学生学习数学的动机和兴趣。

2、让学生认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造。

教学重点平行投影的含义;物体在太阳光下影子的确定;平行投影与物体三种视图之间的关系。

教学难点让学生经历操作与观察、演示与想象、直观与推理等过程,自己归纳总结得出有关结论。

教学方法和手段观察想象法,实践推理法。

教学设计理念本节的设计遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步与发展。

本节课向学生提供充分从事数学活动的机会,帮助他们在自主探索和合

作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

教学组织形式分组探究,集中教授。

教学过程

创设问题情境,引入新课引入:太阳光与影子是我们日常生活中的常见现象,大家在其他课程的学习中已经积累了物体在太阳光下形成的影子的有关知识,本节课我们通过众多实例进一步讨论物体在太阳光下所形成的影子的大小、形状、方向等。

新课学习

1.投影的定义师:大家肯定见过影子,你能举出实例吗?在太阳光下人和树有影子;在有月亮的晚上,人和树也有影子;建筑物在太阳和月亮下也有影子.

师:大家对于影子是司空见惯了,那么,有没有想过影子能给人类带来什么好处呢?

生:我爷爷在田地里干活时,经常根据他的影子来判断时间的早晚;我奶奶在家也经常根据太阳照在门口的影子的大小,来判断是否是晌午了。

师:很好.现在我们确定时间

时,是通过看表来确定的,但在古代并没有表,勤劳的古代前辈利用智慧制造出了日晷.日晷是我国古代利用日影测定时刻的仪器,它由“晷面”和“晷针”组成,当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻。

其实不止在太阳光下,只要在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。

像上面提到的晷针的影子,以及窗户的影子、遮阳伞的影子都是在太阳光下形成的。

2.做一做

取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。

改变小棒或纸片的位置和方向,它们的影子发生了什么变化?师:大家先想象一下,长短不等的小棒及三角形、矩形纸片,它们在太阳光下的影子是什么形状?生:影子的形状应该不变,只是大小发生变化而已.因此,影子分别是线段、三角形、

矩形。

师:大家的想象是否与现实相符呢?我们一齐来做一个试验。

生:试验的结果与想象不一定相符,三角形的纸片在太阳光下的影子有时是三角形,有时是线段;矩形在太阳光下的影子有时是平行四边形,有时是线段。

师:现在来想象第二个问题。

生:由人的影子在一天中的大小不同,可以判断小棒或纸片的影子也是大小不同。

师:请大家再进行试验,互相交换意见后得出结论。

生:当改变小棒或纸片的位置和方向时,它们的影子也相应地发生变化。

师:大家有没有注意到,刚才在做实验时有一种特殊情况,当小棒或纸片与投影面平行时,所形成的影子的大小和形状的特点呢?生:当小棒或纸片与投影面平行时,所形成的影子的大小和形状与原物体全等。

师:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

上面讨论过的小棒或纸片的影子就是平行投影。

3.议一议

P122图中的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的。

(1)在三个不同的时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由。

(2)在同一时刻,大树和小树的影子与它们的高度之间有什么关系?与同伴进行交流。

师:请大家互相讨论后发表自己的看法。

生:顺序应为(3)(2)(1)。

因为在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向,在上午,随着太阳位置的变化,树影的长度逐渐变短,树影也由正西方向向正北方向移动。

(2)因为大树的影子较长,小树的影子较短,因此应该有大树的高度与其影子的长度之比等于小树高度与其影长之比。

生:我认为应该是大树与小树高度之比等于大树与小树影长之比。

4.做一做某校墙边有甲、乙两根木杆。

(1)某一时刻甲木杆在阳光下的影子如P124图所示,你能画出此时乙木杆的影子吗?(用线段表

示影子)(2)在上图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在你所画的图形中有相似三角形吗?为什么?

师:请大家:互相讨论来解答。

九年级数学教案模版篇2

1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.

2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.

重点

中心对称的概念及性质.

难点

中心对称性质的推导及理解.

复习引入

问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:

1.以O为旋转中心,旋转180°后两个图形是否重合?

2.各对应点绕O旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

探索新知

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:

(1)作△ABC一顶点为对称中心的对称图形;

(2)作关于一定点O为对称中心的对称图形.

第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.

从图(1)中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.

下面,我们就以图(2)为例来证明这两个结论.

证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;

(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.

同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

例题精讲

例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.

分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.

解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.

(2)同样画出点B和点C的对称点E和F.

(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.

例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).

课堂小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用.

作业布置

教材第66页练习

九年级数学教案模版篇3

-九年级数学《概率》(第1课时)教学设计

教学目标

1、知识与技能目标

了解必然事件、不可能事件、随机事件的特点。

2、过程与方法目标

经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中提炼出本质特征并加以抽象概括的能力,并会判断必然事件、不可能事件、随机事件。3、情感与态度目标

学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;教学重难点

重点:随机事件的特点。

难点:判断现实生活中哪些事件是随机事件。教法、学法和辅助手段

情境引人,游戏探索,游戏体验,拓展新知。学

参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。教学辅助手段

红、白球若干,不透明盒子两个,骰子若干。教学过程:

一、创设情境,导入新课:

师:同学们,你们买过彩票吗?中过奖吗?

(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)

可编辑

-师:你们想买彩票吗?想中奖吗?生:想。

师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。学生写好后,展示开奖结果。

师:有中奖的吗?请举手,我为中奖的同学准备了奖品。(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。

师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)

师:让我们一起走进九年级数学(上)《概率初步》的学习,《概率初步》会告诉我们怎样计算。我们今天就学习第一节《随机事件》。请打开教材。(多媒体展示课题)二、探索新知

1、(分组活动)问题1:

5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:(1)小军首先抽到的号共有几种可能?(2)抽到的序号小于6吗?(3)抽到的序号会是0吗?(4)抽到的序号会是1吗?

学生回答书中的问题,并判断以下三事件是什么事件(师点评):

可编辑

-(1)抽到的序号小于6。(2)抽到的序号是0。(3)抽到的序号是1。2、老师在讲台上演示

问题2掷一个质地均匀的正方体骰子,骰子的六个面上分

别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?

1、学生猜测以上问题的结果,并判断以下三事件是什么事件:(师点评)(1)出现的点数大于0。(2)出现的点数是7。(3)出现的点数是4。三、

抢答游戏,应用新知例1、判断以下事件是什么事件。①

袋中只有5个红球,能摸到红球。②

打开电视机,正在播动画片

袋中有3个红球,2个白球,能摸到白球。

将一小勺白糖放入

水中,并用筷子不断搅拌,白糖溶解。⑤

测量某天的最低气温,结果为-150℃⑥

早晨的太阳一定从东方升起。

可编辑

-⑦

小红今年15岁,她一定在念初三。⑧

任意掷一枚硬币,正面向上。

一个鸡蛋在没有任何防护的情况下,从六层楼的阳台掉下来,砸在水泥地面上,没有摔破。

例2、袋子中装有5个黑球和16个白球,这些球的形状、大小、质地等完全相同,再看不到球的条件下随机从袋中摸出一个球。(1)这个球是白球还是黑球?

(2)如果两种球都有可能被摸出,那么摸出黑球和白球的可能性一样大吗?(3)你能摸出红球吗?四、拓展新知

思考:小明和小刚在玩掷骰子游戏,二人各执一枚骰子。当两枚骰子的点数之和为奇数,小刚得1分,否则小明得1分,这个游戏对双方公平吗?师引导学生进行分析,共同完成本题。五、反思小结,回味新知1、这节课你学到了什么?

2、你体会到了什么?

3、最让你难忘的是什么六、布置作业

作业:教科书习题25.1第1题。教学设计说明(一)设计思想:

本课设计旨在遵循从具体到抽象,从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏

可编辑

-引如课题,以熟悉的抽签和掷骰子游戏引导学生分清必然事件,不可能事件,随机事件,增强了学生的学习兴趣。(二)教学设计特点

1.贴近生活,让学生在体验中感悟学习.2.创设情境,让学生在兴趣中自主学习.3.开放课堂,让学生在活动中探索学习

可编辑

九年级数学教案模版篇4

一、学情分析

通过对上期末检测分析,发现本班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上掌握了学习的数学的方法和技巧,对学习数学兴趣浓厚。另一方面是相当部分学生因为各种原因,数学已经落后很远,基本丧失了学习数学的兴趣。从上个学期期末测试就可以看出来,优秀率达到了15%,但及格率下降到45%,特别是不及格的学生中,大部分学生的成绩在50分(总分为120分)以下。

二、指导思想

以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。以提高学生中考成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。同时通过本学期的课堂教学,完成九年级上册数学教学任务。并根据实际情况,适当完成九年级下册新授教学内容。

三、教学目标

知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

四、教材分析

第二十一章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。

第二十二章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。本章的难点是解一元二次方程。

第二十三章旋转:本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。本章的重点是中心对称的概念、性质与作图。本章的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。

第二十四章圆:理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系……。本章内容知识点多,而且都比较复杂,是整个初中几何中最难的一个教学内容。

第二十五章概率初步:理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。

五、教学措施

1、精心备课,设置好每个教学情境,激发学生学习兴趣和欲望。深入浅出,帮助学生理解各个知识点,突出重点,讲透难点。

2、加强对学生课后的辅导,尤其是中等生和后进生的基础知识的辅导,提高他们的解题作答能力和正确率。

3、精心组织单元测试,认真分析试卷中暴露出来的问题,并对其中大多数学生存在的问题集中进行分析与讲解,力求透彻。对于少部分学生存在的问题进行小组辅导,突破难点。

4、做好学生的思想教育工作,促进学生学习的积极性,从而提高学生的学习成绩。

九年级数学教案模版篇5

【知识与技能】

1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

【教学重点】

1.会画y=ax2(a>0)的图象.

2.理解,掌握图象的性质.

【教学难点】

二次函数图象及性质探究过程和方法的体会教学过程.

一、情境导入,初步认识

问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

问题2如何用描点法画一个函数图象呢?

【教学说明】①略;②列表、描点、连线.

二、思考探究,获取新知

探究1 画二次函数y=ax2(a>0)的图象.

画二次函数y=ax2的图象.

【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

②从列表和描点中,体会图象关于y轴对称的特征.

③强调画抛物线的三个误区.

误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

如图(1)就是y=x2的图象的错误画法.

误区二:并非对称点,存在漏点现象,导致抛物线变形.

如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.

误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

九年级数学教案模版篇6

教学目标

1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。

2、理解一元二次方程的定义,能识别一元二次方程。

3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。

重点难点

重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。

难点:把实际问题转化为一元二次方程的模型。

教学过程

(一)创设情境

前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。

1、展示课本P.2问题一

引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。

(35-2x)2=900①

2、展示课本P.2问题二

引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?

通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程2t+×0.01t2=3t②

3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:

4x2-140x+32③

0.01t2-2t=0④

(二)探究新知

1、观察上述方程③和④,启发学生归纳得出:

如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:

ax2+bx+c=0,(a,b,c是已知数且a≠0),

其中a,b,c分别叫作二次项系数、一次项系数、常数项。

2、让学生指出方程③,④中的二次项系数、一次项系数和常数项。

(三)讲解例题

例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。

[解]去括号,得3x2+5x-12=x2+4x+4,

化简,得2x2+x-16=0。

二次项系数是2,一次项系数是1,常数项是-16。

点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。

例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

(1)2x+3=5x-2;(2)x2=25;

(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。

(四)应用新知

课本P.4,练习第3题,

(五)课堂小结

1、一元二次方程的显著特征是:只有一个未知数,并且未知数的次数是2。

2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。

3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。

(六)思考与拓展

当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?

当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。

布置作业

课本习题1.1中A组第1,2,3题。

教学后记:

九年级数学教案模版篇7

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

学生学习活动评价设计:

本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

九年级数学教案模版篇8

教学目标

(一)教学知识点

1.能够利用二次函数的图象求一元二次方程的近似根.

2.进一步发展估算能力.

(二)能力训练要求

1.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.

2.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.

(三)情感与价值观要求

通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力.

教学重点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.能够利用二次函数的图象求一元二次方程的近似根.

教学难点

利用二次函数的图象求一元二次方程的近似根.

教学方法

学生合作交流学习法.

教具准备

投影片三张

第一张:(记作§2.8.2A)

第二张:(记作§2.8.2B)

第三张:(记作§2.8.2C)

教学过程

Ⅰ.创设问题情境,引入新课

[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.

九年级数学教案模版篇9

活动目标

1、尝试实验,获得有关容量守恒的经验。

2、乐意动手动脑探究水的变化,了解它的主要特性。

活动准备

1、趣味练习:容量比较)

2、标有刻度的瓶子,水,记录纸,笔。

活动过程

一、观察提问

1.出示趣味练习:容量比较

教师:小朋友看一看这六瓶水是一样多的吗?你是怎么知道的?

小结:现在我们想办法做一下实验,比较一下水的多少吧。

二、实验操作

1、教师:用什么办法验证呢?怎么操作?

要求:实验用的两瓶水不能混在一起,实验时动作慢一点,避免将水洒出影响实验结果。

2、记录实验结果

(1)高矮不同的两只瓶子

方法是通过比较水位的高低,我们可以看出瓶子的水是一样的。

原来瓶子的高矮是不影响水的多少的。

(2)粗细不同的两只瓶子小

选择两个相同的空瓶,把装在大小不同的瓶内的饮料倒入其中,比较出饮料一样多。

方法,任选一个瓶子,将一瓶饮料倒入,用笔画或粘纸条的方法做标记,

把饮料倒出后再将另一瓶饮料倒入该瓶,看饮料位置与原来留下的标记是否一致,

比较出饮料一样多原来瓶子的粗细是不影响水的多少的。

(3)一只含内容物的的瓶子内容物为石子

方法是取出瓶中石子,比较水位的高低。

内容物为海绵小结:方法是将海绵中的水挤回瓶中,比较水位的高低。

原来瓶子里面是否有物体是不影响水的多少的。

3、总结:瓶子的高矮、粗细、内含物是不影响水的多少的,这种现象就叫做容量守恒。

三、活动延伸

想一想,如果把两块一样重的橡皮泥塞进不同形状的瓶子里,橡皮泥会变重吗?

回去试试看吧!

九年级数学教案模版篇10

二次根式的乘除法

教学目标

1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。

2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式.

3、培养学生合情推理能力。

教学过程

一、复习提问

1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?

2、二次根式有哪些性质?计算下列各题:

()2

二、提出问题,导入新知

1、试一试

计算: (1) _=( )=( )

=( )=( )

(2) _=( )=( )

=( )=( )

提问:观察以上计算结果,你能发现什么?

2、思考

_与是否相等?

提问:(1)你将用什么方法计算?

(2)通过计算,你发现了什么?是否与前面试一试的结果一样?

3、概括

让学生观察以上计算结果、归纳得出结论:_=(a≥0,b≥0)

注意,a,b必须都是非负数,上式才能成立。

三、举例应用

例1、计算。

__

说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。

等式_=(a≥0,b≥0),也可以写成=_(a≥0,b≥0)

利用它可以进行二次根式的化简,例如:=_==a2

例2、化简

说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。

四、课堂练习

1、计算下列各式,将所得结果化简:

_ _

2、P12页练习1(1)、(2)、2

五、想一想

1、__与是否相等?a、b、c有什么限制?请举一个例子加以说明。

2、等于__ 吗?

3、化简:

六、小结

这节课我们学习了以下知识:

1、二次根式的乘法运算法则,即_= (a≥0,b≥0)

2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a≥0,b≥0)……)

要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么?

3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a≥ 0),加深了对非负数a的算术平方根的性质的认识

七、作业

习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题

九年级数学教案模版篇11

教学目标

1.使学生掌握百分数、小数互化的方法,并能正确的互化。

2.在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。

3.在学习的过程中培养学生的分析思维和抽象概括能力。

教学重难点

使学生理解掌握百分数和小数互化的方法。

教学工具

课件

教学过程

一、活动(一)复习准备

1、课件出示复习题。

张宇跳绳个数是陈聪的1.37倍。

王志祥跳绳个数是陈聪的6/5.

刘星宇跳绳个数是陈聪的137.5%.

思考:这三个人谁跳得最多,怎么比较?

2.引入新课。

在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?

这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

二、活动(二)百分数和小数的互化。

(1)回忆小数化分数的过程。

(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

三、活动(三)百分数化成小数

1、例1:把0.25,1.4,0.123化成百分数。

①小数化百分数分几步进行?

②学生回答,教师板书:0.25=25/100=25%

③1.4怎样化成分母是100的分数?根据什么?

④“做一做”:把下面各小数化成百分数。

0.381.050.0553

⑤观察例1的各小数,化成百分数后发生了怎样的变化?

你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?

⑥现在你能很快地把下列小数化成百分数吗?(口答)

2.50.7850.16

2、例2:把27%,135%,0.4%化成小数。

学生自己试做,学生总结方法

①说一说百分数化小数的方法。

②观察百分数化成小数发生了什么变化?

③把下面各百分数化成小数

15%80%3.5%

3、小结。

通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

四、巩固与提高

1、P80“做一做”

2、练习十九的第2题

五、作业

练习十九的第1题

课后习题

练习十九的第1题

九年级数学教案模版篇12

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.

重点

中心对称图形的有关概念及其它们的运用.

难点

区别关于中心对称的两个图形和中心对称图形.

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形.

2.(学生活动)作图题.

(1)作出线段AO关于O点的对称图形,如图所示.

(2)作出三角形AOB关于O点的对称图形,如图所示.

延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.

上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.

老师点评:老师边提问学生边解答的特点.

(学生活动)例2请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点.

例3求证:如图,任何具有对称中心的四边形是平行四边形.

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.

证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题.

四、作业布置

教材第70页习题8,9,10.

九年级数学教案模版篇13

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

重点

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

难点

一元二次方程及其二次项系数、一次项系数和常数项的识别.

活动1复习旧知

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

A.0B.1C.2D.3

活动2探究新知

根据题意列方程.

1.教材第2页问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

2.教材第2页问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数.

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

活动3归纳概念

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念.

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

活动4例题与练习

例1在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

例2教材第3页例题.

例3以-2为根的一元二次方程是()

A.x2+2x-1=0B.x2-x-2=0

C.x2+x+2=0D.x2+x-2=0

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页练习第2题.

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

答案:1.a≠1;2.略;3.略;4.k=4.

活动5课堂小结与作业布置

课堂小结

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

作业布置

教材第4页习题21.1第1~7题.

九年级数学教案模版篇14

一、教学目标

1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法

1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

2.教学难点:根据数与数字关系找等量关系。

3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。

4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

三、教学过程

1.复习提问

(1)列方程解应用问题的步骤?

①审题,②设未知数,③列方程,④解方程,⑤答。

(2)两个连续奇数的表示方法是,(n表示整数)

2.例题讲解

例1两个连续奇数的积是323,求这两个数。

分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

解法(一)设较小奇数为x,另一个为,

据题意,得

整理后,得

解这个方程,得。

由得,由得,

答:这两个奇数是17,19或者-19,-17。

解法(二)设较小的奇数为,则较大的奇数为。

据题意,得

整理后,得

解这个方程,得。

当时,

当时,。

答:两个奇数分别为17,19;或者-19,-17。

解法(三)设较小的奇数为,则另一个奇数为。

据题意,得

整理后,得

解得,,或。

当时,。

当时,。

答:两个奇数分别为17,19;-19,-17。

引导学生观察、比较、分析解决下面三个问题:

1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

2.解题中的x出现了负值,为什么不舍去?

答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。

3.选出三种方法中最简单的一种。

练习1.两个连续整数的积是210,求这两个数。

2.三个连续奇数的和是321,求这三个数。

3.已知两个数的和是12,积为23,求这两个数。

学生板书,练习,回答,评价,深刻体会方程的思想方法。

例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。

分析:数与数字的关系是:

两位数十位数字个位数字。

三位数百位数字十位数字个位数字。

解:设个位数字为x,则十位数字为,这个两位数是。

据题意,得,

整理,得,

解这个方程,得(不合题意,舍去)

当时,

答:这个两位数是24。

以上分析,解答,教师引导,板书,学生回答,体会,评价。

注意:在求得解之后,要进行实际题意的检验。

练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)

教师引导,启发,学生笔答,板书,评价,体会。

四、布置作业

教材P42A1、2

补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。

五、板书设计

探究活动

将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?

参考答案:

精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000

当时,50+=60,500=400

当时,50+=80,500=200

所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.

九年级数学教案模版篇15

一、教学思想:

以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施,使每个学生都能够在数学学习过程中获得最适合自己的发展。目的是让学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力;提高学习数学的兴趣,培养学生良好的学习习惯,实事求是的态度,顽强的学习毅力;培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

二、学生基本情况分析:

全班共有学生32人,其中男生12人,女生20人,男女比例失衡。由于新接手教学,对全班具体情况不甚了解,总体来看,本班成绩还算可以,能立于年级上游水平(上期末第三)。但在学生所学知识的掌握程度上,已经出现严重的两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,就连简单的基础知识都不能有效的掌握,成绩较差。整体上学生仍然缺乏推理的思考方法,在写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生上课不是很专心,而且过于自负,自我感觉良好,目空一切,学习习惯有待改善。陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、本学期的教学内容

九年级上册:

第一章:一元二次方程;第2章:命题与证明;第3章:图形的相似;第4章:锐角三角形函数;第5章:概率的计算

九年级下册:

第一章:反比例函数;第二章:二次函数;第三章:圆;第四章:统计估计。

四、教学目标:

1、了解一元二次方程、一元二次方程的解的概念;理解配方法,会用因式分解法、直接开平方法、配方法和公式法解简单的数字系数的一元二次方程;会建立一元二次方程的模型解决简单的实际问题,并会根据实际意义检验求的解是否合理;理解解一元二次方程的基本思想是:降低次数,转化为两个一元一次方程。

2、了解定义、命题、公理和定理的含义,会区分命题的条件与结论;理解证明的必要性,掌握用综合法证题的格式,并使学生体会到证明的过程步步有理有据;

3、了解线段的比、成比例线段,掌握比例的基本性质,并能熟练地进行比例的变形,通过生活中的实例了解黄金分割;理解相似形的概念,熟练掌握相似三角形的判定与性质,掌握相似多边形的性质;了解图形的位似,能够利用位似变换将一个图形放大或缩小;能利用图形相似一些实际问题。

4、理解锐角的正统、余弦及正切的定义,会运用锐角三角函数、勾股定理及直角三角形中两锐角互余的关系解直角三角形;能运用解直角三角形的知识,解决简单的实际问题。

5、理解概率的意义,会用频率估计概率,会计算简单事件的概率,能运用概率的概念,解决一些简单的实际问题。

6、理解反比函数的意义,能根据已知条件确定反比例函数表达式;能画出反比例函数的图象,根据图象和解析表达式探索并理解其性质;能用反比例函数解决某些实际问题。

7、体会并理解二次函数的意义,掌握二次函数的图象和性质;会利用二次函数解决简单的实际问题。

8、理解圆及及其有关概念,掌握圆的基本性质;探索并掌握点与圆、直线与圆以及圆与圆的位置关系,并能利用这些关系解决实际问题;会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积;掌握平行投影与中心投影的有关理念,熟悉基本几何体的三视图。

9、学会收集、整理、描述和分析数据;会用样本的平均数、方差来估计总体的平均数和方差;能借用工具处理较为复杂的统计数据,掌握基本的统计学知识。

10、全面培养、提高学生的数学思维能力、分析问题的能力、推理论证的能力、解决问题的能力;掌握并能应用重要的数学基本思想和方法。

    相关文章

    526826